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Effective locomotion in nature happens by transitioning across
multiple modes (e.g., walk, run, climb). Despite this, far more
mechanistic understanding of terrestrial locomotion has been on
how to generate and stabilize around near–steady-state move-
ment in a single mode. We still know little about how locomotor
transitions emerge from physical interaction with complex terrain.
Consequently, robots largely rely on geometric maps to avoid ob-
stacles, not traverse them. Recent studies revealed that locomotor
transitions in complex three-dimensional (3D) terrain occur proba-
bilistically via multiple pathways. Here, we show that an energy
landscape approach elucidates the underlying physical principles.
We discovered that locomotor transitions of animals and robots
self-propelled through complex 3D terrain correspond to barrier-
crossing transitions on a potential energy landscape. Locomotor
modes are attracted to landscape basins separated by potential
energy barriers. Kinetic energy fluctuation from oscillatory self-
propulsion helps the system stochastically escape from one basin
and reach another to make transitions. Escape is more likely to-
ward lower barrier direction. These principles are surprisingly sim-
ilar to those of near-equilibrium, microscopic systems. Analogous
to free-energy landscapes for multipathway protein folding tran-
sitions, our energy landscape approach from first principles is the
beginning of a statistical physics theory of multipathway locomo-
tor transitions in complex terrain. This will not only help under-
stand how the organization of animal behavior emerges from
multiscale interactions between their neural and mechanical sys-
tems and the physical environment, but also guide robot design,
control, and planning over the large, intractable locomotor-terrain
parameter space to generate robust locomotor transitions through
the real world.

locomotion | obstacle traversal | potential energy barrier | kinetic energy
fluctuation | terradynamics

To move about in the environment, animals can use many
modes* of locomotion (e.g., walk, run, crawl, climb, fly, swim,

jump, burrow) (1–3) and must often transition across them (4, 5)
(e.g., Fig. 1A and Movie S1). Despite this, far more of our
mechanistic understanding of terrestrial locomotion has been on
how animals generate (6–10) and stabilize (11–14) steady-state,
limit-cycle–like locomotion using a single mode.
Recent studies begin to reveal how terrestrial animals transi-

tion across locomotor modes in complex environments. Loco-
motor transitions, like other animal behavior, emerge from
multiscale interactions of the animal and external environment
across the neural, postural, navigational, and ecological levels
(15–17). At the neural level, terrestrial animals can use central
pattern generators (18) and sensory information (19–21) to
switch locomotor modes to traverse different media or overcome
obstacles. At the ecological level, terrestrial animals foraging
across natural landscapes switch locomotor modes to minimize
metabolic cost (22). At the intermediate level, terrestrial animals
also transition between walking and running to save energy (23).
However, there remains a knowledge gap in how locomotor
transitions in complex terrain emerge from direct physical in-
teraction [i.e., terradynamics (24)] of an animal’s body and ap-
pendages with the environment. In particular, we lack theoretical

concepts for thinking about how to generate and control loco-
motor transitions in complex terrain that are on the same level of
limit cycles for single-mode locomotion (25). For example, lo-
comotion in irregular terrain with repeated perturbations is
rarely near steady state and requires an animal to continually
modify its behavior, which cannot be well described by limit cy-
cles (26, 27).
Understanding of how to make use of physical interaction with

complex terrain [environmental affordance (28, 29)] to generate
and control locomotor transitions is also critical to advancing
mobile robotics. Similar to personal computers decades ago,
mobile robots are on the verge of becoming a part of society.
Some robots (e.g., robot vacuums, self-driving cars) already excel
at navigating flat surfaces, by transitioning across driving modes
[e.g., forward drive, U-turn, stop, park (30)] to avoid sparse
obstacles using a geometric map of the environment (31).
However, many critical applications, such as search and rescue in
rubble, inspection and monitoring in buildings, extraterrestrial
exploration through rocks, and even drug delivery inside a hu-
man body, require robots to transition across diverse locomotor
modes to traverse unavoidable obstacles in complex terrain (4, 5,
32) (Fig. 1B). However, terrestrial robots still struggle to do so
robustly (33), because we do not understand well how locomotor
transitions (or lack thereof) emerge from physical interaction
with complex terrain.
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*Here, we use mode in the general sense to refer to distinct, stereotyped locomotor
behavior, not confined to limit-cycle behavior such as gaits or templates (25).
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Our study is motivated by recent observations in a model
system of insects traversing complex three-dimensional (3D)
terrain. The discoid cockroach, native to rainforest floor, can
traverse flexible, grass-like beam obstacles using many locomotor
modes, stochastically transitioning across them via multiple
pathways (34). For simplicity, hereafter we focus on the transi-
tion between two modes. The animal often first pushes against
the beams, and beam elastic restoring forces lead the animal
body to pitch up (Fig. 1C, blue). After this, however, the animal
rarely pushes across (3% probability) but often rolls (Fig. 1C,
red) to maneuver through beam gaps (45% probability). We
define these as “pitch” and “roll” modes. Note that we use “lo-
comotor mode” here in the general sense, not confined to limit-
cycle locomotor behavior. The pitch mode is more challenging
than the roll mode because the animal has to lift its weight and
deflect the beams more (this is only true when beams are stiff,
however; see Results). Thus, the animal appears to statistically
transition from less to more favorable modes. In addition, the
animal’s body oscillates as its legs continually pushed against the
ground when trying to traverse. Besides in obstacle traversal,
similar multipathway locomotor transitions, preference of some
modes over others, and seemingly wasteful body oscillation were
observed in self-righting of insects (35).

In the field of protein folding, adopting a statistical physics
view and using an energy landscape approach led researchers to
recognize that proteins fold via multiple pathways and un-
derstand the physical principles (36–38). These near-equilibrium,
microscopic systems statistically transition from higher to lower
energy states (local minima) on a free-energy landscape (in-
creasing thermodynamic favorability). Thermal fluctuation helps
the system stochastically cross energy barriers at transition states
(saddle points between local minimum basins). These physical
principles operating on a rugged landscape lead to the multi-
pathway protein folding transitions. Inspired by the seeming
similarities of our system to them, we contend that an energy
landscape approach helps understand how self-propelled,
far-from-equilibrium macroscopic animals’ and robots’ probabi-
listic locomotor transitions in complex 3D terrain emerge from
physical interaction, whose equations of motion are unknown or
intractable (39, 40). Specifically, we hypothesize that 1) the self-
propelled system’s state is attracted to a local minimum basin on
a potential energy landscape; locomotor transition from one
mode to another can be viewed as the system state escaping from
one basin and settling into another. (What governs transition?)
2) When it is comparable to the potential barrier, kinetic energy
fluctuation from oscillatory self-propulsion helps the system es-
cape from a landscape basin to make locomotor transitions.
(When does transition happen?) 3) Escape from a basin is more
likely toward a direction along which the escape barrier is lower.
(How does transition happen?)
To begin to establish an energy landscape approach of loco-

motor transitions across modes in complex 3D terrain, we tested
these hypotheses for the two representative modes (pitch and
roll) of the model body–beam interaction system defined above.
Although the previous study introduced an early energy land-
scape model to qualitatively explain why locomotor shape af-
fected physical interaction and thus locomotion (34), none of
these hypotheses were proposed or tested. We emphasize that
our potential energy landscape directly arises from locomotor-
terrain interaction physics using first principles. This is unlike
artificially defined potential functions to explain walk-to-run
transition (41) and other nonequilibrium biological phase tran-
sitions (42), or metabolic energy landscapes inferred from oxy-
gen consumption measurements to explain behavioral switching
of locomotor modes (22).
Because animal locomotion emerges from complex interac-

tions of neural and physical mechanisms (1), to observe the
outcome of pure physical interaction, we developed and tested a
minimalistic robotic physical model (Fig. 1D and Movie S2) with
feedforward control. The robot had an ellipsoid-like body that
was propelled forward at a constant speed and was free to pitch
and roll (achieved through a gyroscope mechanism) in response
to interaction with two beams. The body was constrained not to
yaw or move laterally to simplify energy landscape modeling. We
also performed experiments with the discoid cockroach travers-
ing beams during escape response to study how physical in-
teraction affects the animal’s locomotor transitions when neural
control is bandwidth limited (1). Comparison of robot and ani-
mal observations can reveal aspects of the transitions that likely
involve neural mechanisms.
To test the first hypothesis, in both robot and animal experi-

ments, we used rigid “beams” with torsional joints at the base (SI
Appendix, Figs. S1 and S2) as one-degree-of-freedom 3D terrain
components to generate a simple potential energy landscape. We
then calculated the potential energy landscape and 3D motion of
the robot or animal body and beams in high accuracy [as opposed
to visual examination in the previous study (34)] (SI Appendix,
Figs. S3 and S4 and Movies S3 and S4) for the entire traversal.
This allowed us to quantify how the system state behaved on the
landscape during each observed locomotor mode and transition
between modes. To test the second hypothesis, for the robot, we
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Fig. 1. Locomotor transitions of animals and robots in complex terrain. (A
and B) Illustrative locomotor transitions of (A) a cockroach traversing forest
floor (image credit: Scott Brill [photographer]) and (B) a robot traversing
rubble for search and rescue. (C) A cockroach transitioning (orange arrow)
from pitch to roll mode to traverse grass-like beam obstacles. (D) Robotic
physical model. (E and F) Pitch-to-roll transition probability of animal (E) and
robot (F) as a function of beam stiffness K. For robot, we varied oscillation
frequency f to vary kinetic energy fluctuation. ***Significant dependence on
K (animal: mixed-effects χ2 test, P < 0.0001, χ2 = 297.4; robot: χ2 test, P <
0.0001, χ2 = 247.1). n = 64, 60, 60, 62, and 64 trials for animal and n = 70
trials at each K for robot. Note that at f = 0, transition occurred in one trial at
K = 344 mN·m/rad (resulting in a 10% probability) due to lateral displace-
ment of the body. This was from lateral bending of the vertical bar driving
the body forward due to large lateral force from the stiff beams, an effect
not captured by our model.
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applied controlled oscillation with variable frequency f to vary
kinetic energy fluctuation (SI Appendix, Fig. S5). Because we
could not vary the animal’s naturally occurring body oscillation,
in animal experiments we changed the barrier relative to kinetic
energy oscillation by varying beam torsional joint stiffness K by
over an order of magnitude in the range of natural flexible ter-
rain elements (SI Appendix, Table S2). K was also varied by over
an order of magnitude for robot experiments and, together with
animal experiments, helped elucidate how transition depended
on terrain properties. Because the potential energy landscape
consists of not only beam elastic energy but also body and beam
gravitational energy, variation of K also changed how escape
barrier compared in different directions, allowing the third hy-
pothesis to be tested. See Methods and SI Appendix, Supple-
mentary Methods for technical detail and SI Appendix, Table S1
for sample sizes.

Results
Before encountering the beams, both the robot and animal
moved forward with a near horizontal body posture. After beam
contact, both the robot and animal started traversing by pushing
against the beams, with the body pitched up. As beam stiffness K
increased, pitch-to-roll transition probability increased for both
the robot and animal (Fig. 1 E and F; P < 0.0001, mixed-design
χ2 test). At low K, neither transitioned to the roll mode even with
body oscillation. At the highest K, both always transitioned,

except for the robot without oscillation. In addition, for the robot
at high K (255 mN·m/rad), pitch-to-roll transition probability
increased with oscillation frequency f (Fig. 1F) and thus with
kinetic energy fluctuation (SI Appendix, Fig. S5A). At the highest
K tested (344 mN·m/rad), pitch-to-roll transition probability
reached 1 for all f > 0 tested. For simplicity, below we first de-
scribe robot results followed by animal results.
We tested the first hypothesis by calculating the robot’s po-

tential energy landscape and evaluating how its system state
behaved on the landscape (Fig. 2 and Movie S4). Using the
measured physical and geometric parameters of the body and
beams, we calculated the robot’s system potential energy (sum of
body and beam gravitational energy and beam elastic energy) as
a function of body pitch, roll, and forward position x relative to
the beams. For simplicity, we first examine results at K = 255 N·
m/rad. Before the body contacted the beams (Fig. 2 A, i),
pitching or rolling increased body gravitational energy (because
body center of mass was below rotation axes; SI Appendix, Fig.
S6). Thus, the potential energy landscape over body pitch–roll
space had a global minimum at zero pitch and zero roll,
i.e., when the body was horizontal (Fig. 2 B, i). As the body
moved closer and interacted with the beams (Fig. 2 A, ii and iii),
the global minimum evolved into a “pitch” local minimum at a
finite pitch and zero roll (Fig. 2 B, ii and iii, blue). Meanwhile,
two “roll” local minima emerged at near zero pitch and a finite
positive or negative roll (Fig. 2 B, ii and iii, red, for rolling right

A

B

Fig. 2. Robot locomotor transitions on a potential energy landscape. Results are shown at K = 255 mN·m/rad. (A) Snapshots of body before and during
interaction with two beams in pitch (i, ii, and iii) and roll (iii′) modes. (B) Snapshots of landscape over body pitch–roll space before (i) and during (ii and iii)
interaction. Representative system state trajectories are shown for being trapped in pitch basin (blue) and transitioning to roll basin (red). Insets in iii define
potential energy barriers to escape from pitch local minimum in pitch-up and positive roll directions. The dashed gray curves on landscape show boundaries
between pitch and roll basins. Note that landscape evolves as body moves forward (increasing x), and only part of landscape over pitch–roll space is shown to
focus on pitch and roll basins.
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or left), whose energies were lower than the pitch local mini-
mum. Hereafter, we refer to these local minimum basins as pitch
and roll basins.†
We discovered that the robot’s system state during the ob-

served pitch and roll modes were attracted to the pitch and roll
basins, respectively. When the body was far away from the
beams, the system state in pitch and roll space settled to the
global minimum of the landscape (Fig. 2 B, i and Movie S4).
During beam interaction, without oscillation, the system state
was trapped in the pitch basin, leading to the body pushing across
the beams in a pitched-up orientation with little roll (Fig. 2 A and
B, ii and iii, and Movie S4, Top). With oscillation, the system
stochastically escaped from the pitch basin and crossed a po-
tential energy barrier to reach the roll basin (Fig. 2 B, iii, and
Movie S4, Bottom), thereby transitioning from the pitch to the
roll mode (Fig. 2 B, ii and iii′). We examined system state tra-
jectory on the landscape calculated for each trial (see examples
in Movie S6, third row). Whether the robot was trapped in the
pitch mode (blue trajectories) or transitioned to the roll mode
(red trajectories), its system state was attracted to the corre-
sponding basin in nearly all trials (99%, not significantly different
from 1, P > 0.15, Student’s t test; see Fig. 4 A, iii). Because of this
strong attraction, the measured system potential energy closely
matched the observed mode basin’s local minimum energy
throughout traversal (see Fig. 5, iii, solid vs. dashed curves). All
of these findings held true at other K (near 100%; see Figs. 4A
and 5, and Movie S6). Together, these robot results supported
our first hypothesis.
Next, we tested the second hypothesis. We first observed how

kinetic energy fluctuation affected the robot’s escape from a
basin. Again, we examine results at K = 255 N·m/rad first for
simplicity. As f increased (which increased kinetic energy fluc-
tuation), the system was more likely to escape from the pitch
basin it was initially attracted to and reach the roll basin (Fig. 3
and Movie S5), resulting in more likely pitch-to-roll transitions

(Fig. 1F; K = 255 mN·m/rad). Then, we compared the minimal
potential energy barrier to escape from the pitch local minimum
with the average kinetic energy fluctuation at f = 6 Hz (Fig. 4 C,
iii, and Movie S7, Bottom). The escape barrier depended on both
toward which direction the system moved in the pitch–roll space
(Fig. 2 B, iii and Insets, and Fig. 4 B, iii) and body forward po-
sition x relative to the beams (Fig. 4 C, iii, and Movie S7, Bot-
tom). Minimal escape barrier occurred at the saddle point
between the pitch and roll basins (Fig. 4C, yellow dot), which we
defined as pitch-to-roll transition barrier. Only within a small
range of x was average kinetic energy fluctuation at f = 6 Hz
(Fig. 4 C, iii, green) sufficient for overcoming pitch-to-roll
transition barrier (Fig. 4 C, iii, black, and Movie S8, third col-
umn). This range matched remarkably well with the x range over
which pitch-to-roll transition was observed with increasing like-
lihood with f (gray band showing mean ± SD from all trials
across f). All these findings held true at K = 344 N·m/rad. At K =
28 N·m/rad, minimal escape barrier far exceeded kinetic energy
fluctuation, consistent with the absence of transition. Together,
these robot results supported our second hypothesis.
Finally, we tested the third hypothesis by examining the di-

rection toward which the robot’s system state moved during in-
teraction. At each K, when the body was not in contact with the
beams, the escape barrier was large along all directions in the
pitch–roll space (Movie S7, Bottom, and Movie S8, second row;
e.g., x = −80 mm). As the body moved forward (increasing x), the
escape barrier toward the direction of roll basins reduced dras-
tically, becoming comparable to or even smaller than average
kinetic energy fluctuation at f = 6 Hz (green circle) at the saddle
point (yellow dot). By contrast, escape barrier in the direction of
pitching up or down was always greater than average kinetic
energy fluctuation (Fig. 4B and Movie S8, third row). Exami-
nation of how the system state moved on the landscape (Movie
S9, Top) and probability distribution of system state velocity
directions in the pitch–roll space (Fig. 4D and Movie S9, Bottom)
showed that escape was more aligned with the direction of the
saddle point between pitch and roll basins, i.e., escape was more
likely toward the direction of lower barrier. This is intuitive be-
cause in other directions escape barrier was higher and often
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†A fourth basin also emerged with its local minimum at a finite positive pitch and zero
roll, corresponding to the body pitching down against the beams. However, such a
configuration was never observed in the robot or animal.
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are at K = 28, 55, 255, and 344 mN·m/rad. Data shown in A, C, and D are for all f tested (n = 70 trials) at each K.
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exceeded kinetic energy fluctuation. Together, these robot ob-
servations supported our third hypothesis.
Comparison of robot observations across K further suggested a

concept of favorability for locomotor transitions. As K increased,
pitch-to-roll transition became more likely (Fig. 4A), saturating
at 1 for all f > 0 tested at the highest K (Fig. 1F). Intuitively,
when the beams were flimsy, the body pushed across (trapped in
the pitch mode) as if nothing were there; when the beams were
rigid, the body could not push across and must roll. Thus, the
likelihood of pitch-to-roll transition is positively correlated with
how favorable transitioning to the roll mode is relative to staying
in the pitch mode. To provide a measure of favorability, we
compared whether the pitch or roll basin was lower during tra-
versal, measured at their respective local minimum (Fig. 5 and
Movie S8, fourth row). At low K (28 mN·m/rad), the pitch basin
remained the global minimum basin throughout traversal (Fig. 5,
i), indicating that the pitch mode was more favorable. As K in-
creased, the pitch basin became increasingly higher than the roll
basin (Fig. 5, ii–iv), indicating that the roll mode became in-
creasingly more favorable. At small K = 55 mN·m/rad for x > 0,
although the roll mode was more favorable (Fig. 5, ii), kinetic
energy fluctuation was smaller than the transition barrier
(Fig. 4 C, ii); thus, transition did not occur (Fig. 4 A, ii). We
emphasize that the negative correlation between the probability
of staying in or transitioning to a mode and its relative basin
height is only an emergent outcome of the transition physics. The
passive robot does not directly feel how high or how low an
adjacent basin is; whether it escapes and makes a transition only
depends on the basin in which it currently resides. Exactly how
favorability difference between basins emerges from the local
dynamics of escaping from a basin remains to be understood.
Similar to the feedforward-controlled robot, the animal’s sys-

tem state during the observed pitch or roll mode was attracted to
the corresponding basin of the potential energy landscape
(Fig. 6A, ∼90% of trials at all K; Movie S10, Top and Middle). In
addition, pitch-to-roll transition mostly occurred when both av-
erage kinetic energy fluctuation became comparable to transition
barrier and the roll mode became more favorable than the pitch
mode (Fig. 6B and Movie S10, Bottom). These similar observa-
tions were remarkable because, for the animal that displayed
larger lateral motion and yawing, leg motion, and individual
variation, the landscape (which was averaged from all trials)
provided a much coarser approximation of the system than for
the simpler, well-controlled robot. These animal results sup-
ported our first and second hypotheses. We did not test the third

hypothesis in the animal, considering that the measured system
state velocity was noisy and the animal had higher lateral and
yaw motion during traversal.
These results showed that physical interaction with the terrain

also played a major role in the animal’s probabilistic locomotor
transitions, although active behavior was likely at play. In some
trials, the animal transitioned even when its average kinetic en-
ergy fluctuation was smaller than transition barrier (Fig. 6B). In
addition, the animal occasionally transitioned to the less favor-
able roll mode at low K (Fig. 6 A, i and ii, red trajectories).
Furthermore, the animal often flexed its head relative to the
body and used the two hindlegs differentially (43) during beam
interaction (23%, 63%, 89%, 79%, and 85% of the trials at the
five K values). All of these were evidence that the animal’s
transition involved active behavior (see Discussion). Unlike the
robot that was pulled forward at a constant speed (pulling force
always exceeded beam resistive force), the animal had a finite
ability to push forward and may rely more on such active be-
havior to facilitate transition (43).

Discussion
In summary, using a transition between two representative
modes in a model system, we demonstrated that an energy
landscape approach helps understand how stochastic transitions
of animals and robots across locomotor modes statistically
emerge from physical interaction with complex 3D terrain. We
discovered that kinetic energy fluctuation from oscillatory self-
propulsion helps the system cross barriers on a potential energy
landscape to make locomotor transitions. This provided com-
pelling evidence about why variation in movement can lead to
stochastic outcome (44) and can be advantageous when loco-
motor behavior is separated into distinct modes. This also
explained early observations of the surprising ability to traverse
unstructured terrain of bandwidth-limited, rapid-running insects
(27) and feedforward-controlled legged robots (45), as both have
substantial body oscillation during locomotion. However, we
view this way of “vibrate like a particle” as only one of a suite of
transition strategies. Animals and robots may use other strategies
to make transitions, such as plan anticipatory actions (46), and
use random search (47) to overcome barriers, use sensory
feedback adjustments to move toward lower barriers or reduce
barriers (43), or even change morphology to modify landscape
topology to introduce or eliminate certain modes (39).
We posit that there is an “energy landscape-dominated” re-

gime of locomotion, where along certain directions there exist
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large potential energy barriers that are comparable to or exceed
kinetic energy and/or mechanical work generated by each pro-
pulsive cycle or motion. This may happen when propulsive forces
are either limited by physiological, morphological, and environ-
mental (e.g., low friction) constraints or do not well align with
directions along which large barriers occur. In complex terrain
with many large obstacles (34, 39, 43, 46) and even during
strenuous maneuvers (35, 47–49), these situations are frequent.
In this regime, not only does energy landscape modeling provide
a useful statistical physics approach for understanding locomotor
transitions across modes, but it may also allow comparison across
systems (different animal species, robots, terrain, and modes) to
discover general physical principles. Outside of this regime, en-
ergy landscape modeling is not useful—for example, not for
ballistic jumping over small obstacles with kinetic energy far
exceeding potential energy barriers.
We discovered that distinct attractive basins of the potential

energy landscape can lead to stereotyped locomotor modes and
transitions in both the animal and feedforward-controlled robot.
Because our potential energy landscape is directly derived from
first principles [as opposed to fitting a model to behavioral data
(50–52)], this result provided compelling evidence that behav-
ioral stereotypy of animals emerges from their neural and me-
chanical systems directly interacting with the physical environment
(15, 16). In addition, our approach should inform how direct
physical interaction with the environment constrains behavioral hi-
erarchy (15, 16). For example, for grass-like obstacle traversal,
starting with our coarse-grained landscape here resulting from a
rigid body interacting with rigid “beams” on torsional springs, we
can add degrees of freedom describing head flexion (43), body
bending and twisting, articulated leg motions, and more realistic
beam obstacles with cantilever bending and spatial heterogeneity.
This will reveal more nuanced pathways of transitioning between
fine-grained locomotor modes that have a variety of body and

appendage configuration and terrain responses [e.g., flexing the
head and tucking the legs to roll into the gap (43), separating beams
laterally, etc.]. Analyzing the disconnectivity (38) of basins of such a
more complete, high-dimensional energy landscape will reveal the
hierarchy [“treeness” (53)] of locomotor modes in complex terrain.
More broadly, these considerations suggest that our energy

landscape approach provides a means toward first-principle,
physical understanding of the organization of locomotor behav-
ior, filling a critical knowledge gap. The field of movement
ecology (17) makes field observations of trajectories of animals
as a point mass moving and making behavioral transitions in
natural environments (e.g., ref. 54), whose physical interactions
are difficult to measure. Recent progress in quantitative ethology
has advanced understanding of the organization of behavior (15,
16, 51–53), often by quantifying kinematics in homogeneous,
near featureless laboratory environments (50, 51, 53, 55). Our
work highlights the importance and feasibility of, and opens
avenues for, studying how the organization of behavior is con-
strained by an animal’s direct physical interaction with realistic
environments (24). Doing so will help inform how animal be-
havior evolves in nature; it will also simplify robot design, con-
trol, and planning to generate robust locomotor transitions in
complex terrain, which may be otherwise intractable in the large
locomotor-terrain parameter space. This is analogous to rugged
free energy landscapes allowing divide-and-conquer in protein
folding (56).
Our empirically discovered physical principles of locomotor

transitions are surprisingly similar to those of microscopic sys-
tems (SI Appendix, Fig. S7), especially multipathway protein
folding transitions where predictive energy landscape theories have
been very successful (36–38). Thus, we envision our energy landscape
as the beginning of a statistical physics theory that will quantitatively
predict global structures and emergent dynamics of multipathway
locomotor transitions in the energy landscape-dominated regime.
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An immediate next step toward this is to model conservative
forces using potential energy landscape gradients and add sto-
chastic, nonconservative propulsive and dissipative forces that
perturb the system to “diffuse” across landscape barriers (analo-
gous to refs. 57 and 58). Doing this will also elucidate how escape
dynamics from a basin locally leads to emergent favorability dif-
ference between basins. These physical principles will help reveal
how animals, and how robots should, use local force sensing to
control motion to facilitate locomotor transitions on the landscape.
Furthermore, although it seems obvious that near-equilibrium sta-
tistical thermodynamics does not directly apply here, an energy
landscape approach to locomotor transitions in complex terrain
provides opportunities to test and develop new theories of few-body
active matter (59).
Finally, our energy landscape approach provides a conceptual

way of thinking about locomotor modes beyond near–steady-
state, limit-cycle–like behavior [e.g., walk, run, climb (6–8)] by
adding metastable behavior (60) locally attracted to landscape
basins (e.g., pitch and roll modes here, which are far-from-steady
maneuvers). We foresee the creation of new dynamical systems
theories of terrestrial locomotion (25) that produce transitions
across locally attractive landscape basins as well as between limit-
cycle attractors (41, 61). They will enable using physical in-
teraction to design, control, and plan basins funneled into one
another to compose (62) locomotor transitions to perform high-
level tasks in the real world. Terradynamics of locomotor-terrain
interaction starting from first principles (24) such as illustrated
here will facilitate this progress.

Methods
Robot Experiments.We used a linear actuator to propel the body forward at a
constant speed of 0.7 cm·s−1 and a pair of DC motors via a linkage to ver-
tically oscillate it at a variable frequency f of 0 to 6 Hz and collected a total
of 280 trials. We varied K of the beams by using different combinations of
torsional springs in parallel.

Animal Experiments. We challenged the discoid cockroach to traverse a layer
of beam obstacles. We tested six individuals and beams of the five different K
and collected a total of 310 trials.

Potential Energy Landscape Model. We calculated system potential energy as
the sum of body and beam gravitational potential energy and beam elastic
potential energy:

E = mbodygΔz + 1
2
mbeamgL cosΔθ1 + cosΔθ2–2( ) + 1

2
K Δθ21 + Δθ22( ), [1]

where mbody is body mass, g is gravitational acceleration, Δz is body center
of mass height increase from its equilibrium configuration (at near zero
pitch and zero roll), mbeam is beam mass, L is beam length, K is beam tor-
sional stiffness, and Δθ1 and Δθ2 are beam deflection angles from vertical.
See SI Appendix, Fig. S6 for definition of variables and parameters.

See SI Appendix, Supplementary Methods for detailed methods.

Data Availability. All data are included in the main text or SI Appendix.
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